首页> 外文OA文献 >An Accurate Sequentially Markov Conditional Sampling Distribution for the Coalescent With Recombination
【2h】

An Accurate Sequentially Markov Conditional Sampling Distribution for the Coalescent With Recombination

机译:具有重组的聚结的精确顺序Markov条件采样分布

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The sequentially Markov coalescent is a simplified genealogical process that aims to capture the essential features of the full coalescent model with recombination, while being scalable in the number of loci. In this article, the sequentially Markov framework is applied to the conditional sampling distribution (CSD), which is at the core of many statistical tools for population genetic analyses. Briefly, the CSD describes the probability that an additionally sampled DNA sequence is of a certain type, given that a collection of sequences has already been observed. A hidden Markov model (HMM) formulation of the sequentially Markov CSD is developed here, yielding an algorithm with time complexity linear in both the number of loci and the number of haplotypes. This work provides a highly accurate, practical approximation to a recently introduced CSD derived from the diffusion process associated with the coalescent with recombination. It is empirically demonstrated that the improvement in accuracy of the new CSD over previously proposed HMM-based CSDs increases substantially with the number of loci. The framework presented here can be adopted in a wide range of applications in population genetics, including imputing missing sequence data, estimating recombination rates, and inferring human colonization history.
机译:顺序马尔可夫合并是一个简化的族谱过程,旨在通过重组捕获完整合并模型的基本特征,同时可扩展基因座的数量。本文将顺序马尔可夫框架应用于条件抽样分布(CSD),这是许多用于种群遗传分析的统计工具的核心。简而言之,如果已经观察到序列的集合,则CSD描述了另外采样的DNA序列为某种类型的概率。在此开发了顺序马尔可夫CSD的隐马尔可夫模型(HMM)公式,从而产生了一种算法,其时间复杂度在基因座数量和单倍型数量上都是线性的。这项工作为最近引入的CSD提供了高度准确,实用的近似值,该CSD是通过与合并与重组相关联的扩散过程获得的。从经验上证明,与以前提出的基于HMM的CSD相比,新CSD精度的提高随基因座数量的增加而大大增加。此处介绍的框架可以在群体遗传学中广泛应用,包括估算缺失的序列数据,估计重组率以及推断人类定殖历史。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号